Unbiased Estimator of Population Geometric Mean

Dhritikesh Chakrabarty

Independent Researcher, Guwahati, Assam, India.

Abstract - In this study, attempt has been made on finding unbiased estimator of geometric mean of a

Abstract - In this study, attempt has been made on finding unbiased estimator of geometric mean of a population from random sample drawn from it. Description of the estimator along with numerical example has been presented in this article.

Keywords: Population, Geometric Mean, Random Sample, Unbiased Estimator.

1. INTRODUCTION

In the literature of statistical inference, an estimator is defined as a method for calculating parameter's value from sample data [2,3,15,16,17,18,20,21] and unbiasedness is regarded as one desirable property/quality of estimator [4,5,13,15,21]. Concept of unbiasedness implies that the expected value of an estimator is equal to the true value of the parameter being estimated which further implies that on the average the estimator yields the true/correct value of the parameter to be estimated over sufficient number of trials [14, 16, 17, 19, 20].

The existing definition of unbiased estimator is based on the concept of mathematical expectation or simply expectation [1,2,5,1214,16,19,22]. Later on, it was observed that the expectation on the basis of which this unbiased estimator was defined was more specifically the arithmetic expectation [6,7]. In addition to the concept of arithmetic expectation, three more concepts of expectation namely geometric expectation [6,7,8], harmonic expectation [6,7,9,10] and quadratic expectation [11] were introduced/developed in some recent studies. Since the existing definition of expectation is equivalent to the definition of arithmetic expectation [6,7], the existing unbiased estimator can also be regarded/termed as arithmetic unbiased estimator.

In many situations, it is required to determine the geometric mean of a population. But the whole population data may not be available for every population. In that case, the common practice is to estimate the population geometric mean from a sample drawn from the population [2,3,4,15,18]. An estimator is satisfy some criteria [4,5,13,15,21] among which unbiasedness is a desirable one [2,16,19,20].

In this study, attempt has been made on finding unbiased estimator of geometric mean of a population from random sample drawn from it. Description of the estimator has been discussed below along with numerical example.

2. GEOMETRIC UNBIASED IN ESTIMATORS

Let

$$X_1, X_2, \dots, X_n$$

be a random sample drawn from a population having parameter θ whose true value is θ 0

&
$$T = T(X_1, X_2, ..., X_n)$$

be an estimator of the parameter θ .

Volume: 04 Issue: 03 | July - September 2025 | ISSN: 2583-5602 | www.puirj.com

If

$$E(T) = \theta$$

where E(T) is the expected value of T,

then T is unbiased estimator of parameter θ .

Applying the concept/definition of arithmetic expectation in the general concept/definition of unbiased estimator as mentioned above, it is obtained that

T can be regarded as arithmetic unbiased estimator of parameter θ if

$$E_A(T) = \theta$$

where $E_A(T)$ is the arithmetic expectation of T.

In this connection, it is to be mentioned that this is the concept/definition of unbiasedness usually known/used and are available in the existing literature of statistics.

Now, applying the concept/definition of geometric expectation in the general definition of unbiased estimator, one can obtain the definition of geometric unbiased estimator as follows:

Definition of Geometric Unbiased Estimator

T can be regarded as geometric unbiased estimator of parameter θ if

$$E_G(T) = \theta$$

where $E_G(T)$ is the geometric expectation of T.

Geometric expectation exists and can be defined for strictly positive valued random variable [6,7,8].

Accordingly, $E_G(T)$ can exist for strictly positive valued estimator T of parameter θ .

This means, geometric unbiased estimator can exist in the case of only strictly positive valued estimator but not for any real valued estimator.

It is to be noted that the value of θ , in this case, is an unknown positive real valued number.

3. UNBIASED ESTIMATOR OF POPULATION GEOMETRIC MEAN

Let a population be consist of the N positive valued observations

$$Y_1$$
 Y_2 Y_N

Then the population geometric mean G is given by

$$G = (Y_1, Y_2, \dots, Y_N)^{\frac{1}{N}}$$

Suppose

$$y_1, y_2, \dots, y_n$$

is a random sample of size n drawn from the population.

Then the sample geometric mean g is given by

Volume: 04 Issue: 03 | July - September 2025 | ISSN: 2583-5602 | www.puirj.com

$$g = (y_1 \cdot y_2, \dots, y_n)^{\frac{1}{n}}$$

Since the sample is random, its each member carries equal probability to assume any observation in the population

This implies,

 y_1 assumes the values

$$Y_1$$
 Y_2 Y_N

with probabilities

$$P(y_1 = Y_1) = P(y_1 = Y_2) = \dots P(y_1 = Y_N) = \frac{1}{N}$$

Similarly,

 y_2 assumes values the values

$$Y_1$$
 Y_2 Y_N

with probabilities

$$P(y_2 = Y_1) = P(y_2 = Y_2) = \dots P(y_2 = Y_N) = \frac{1}{N}$$

 y_n assumes values the values

$$Y_1$$
 Y_2 Y_N

with probabilities

$$P(y_{n} = Y_1) = P(y_{n} = Y_2) = \dots P(y_{n} = Y_N) = \frac{1}{N}$$

Therefore,

$$E_{G}(y_{1}) = Y_{1}^{1/N} Y_{2}^{1/N} Y_{1}^{1/N} = G$$

Similarly,

$$E_{G}(y_{2}) = Y_{1}^{1/N} \cdot Y_{2}^{1/N} \cdot \dots \cdot Y_{N}^{1/N} = G$$

$$E_{G}(y_{n}) = Y_{1}^{1/N} Y_{2}^{1/N} Y_{2}^{1/N} Y_{N}^{1/N} = G$$

This implies,

Volume: 04 Issue: 03 | July - September 2025 | ISSN: 2583-5602 | www.puirj.com

$$E_{G}(\mathbf{y}_{1}) = E_{G}(y_{1} \cdot y_{2}, \dots, y_{n})^{\frac{1}{n}} = \{E_{G}(y_{1} \cdot y_{2}, \dots, y_{n})\}^{\frac{1}{n}}$$

$$= \{E_{G}(y_{1}) \cdot E_{G}(y_{1}), \dots, E_{G}(y_{1})\}^{\frac{1}{n}} = G$$

Hence, g is a geometric unbiased estimator of G.

Thus, the following result is obtained:

"If a random sample is drawn from a population containing positive valued observations, then sample geometric mean is a geometric unbiased estimator of the population geometric mean."

4. NUMERICAL EXAMPLE

Suppose a population consists of the five observed values

so that

The Population Geometric Mean = 7.8155132540920556769773007717858

Let us consider random sample of size 2.

There are 5C_2 = 10 possible random samples of size 2 which are

The 10 respective Geometric Means of these samples are

4.2426406871192851464050661726291, 5.1961524227066318805823390245176, 6.0, 6.7082039324993690892275210061939, 7.3484692283495342945918522241177, 8.4852813742385702928101323452582, 9.4868329805051379959966806332981, 10.392304845413263761164678049035, 11.618950038622250655537796199347, 13.416407864998738178455042012388

Now,

Geometric Mean of these 10 sample Geometric Means

= 7.8155132540920556769773007717858

which is the Geometric Mean of the population.

Similarly, if we consider random sample of size 3 then there are ${}^{5}C_{3}$ = 10 such possible random samples which are

Volume: 04 Issue: 03 | July - September 2025 | ISSN: 2583-5602 | www.puirj.com

The 10 respective Geometric Means of these samples are

 $5.4513617784964189766736352689818 \ , 6.0 \ , 6.4633040700956511652778806995581 \ , \\ 6.8682854553199912068482532716381 \ , 7.3986362229914103044748339694638 \ , \\ 8.1432528497847197145542684090385 \ , 8.6534974218444502939298298646806 \ , \\ 9.3216975178615766006329872825672 \ , 10.259855680060181936118653235263 \ , \\ 11.744602923506590786274808181235$

Now,

Geometric Mean of these 10 sample Geometric Means

= 7.8155132540920556769773007717858

which is the Geometric Mean of the population.

Again, if we consider random sample of size 4 then there are 5C_4 = 5 such possible random samples which are

$$\{3,6,9,12\},\{3,6,9,15\},\{3,6,12,15\},\{3,9,12,15\},\{6,9,12,15\}$$

The 5 respective Geometric Means of these samples are

6.640091518201929554452741640642, 7.02104195796214781537742290645, 7.5446005780976124499065930279531, 8.3494730511412218063225193585634, 9.9292527589406193151000153141739

Now,

Geometric Mean of these 5 sample Geometric Means

= 7.8155132540920556769773007717858

which is the Geometric Mean of the population.

In this example thus, sample geometric mean is a geometric unbiased estimator of the population geometric mean.

5. CONCLUSION

It has already been mentioned that unbiasedness is a desirable property of estimator. Accordingly, it is always desired to find such an estimator, of a parameter to be estimated, which is unbiased subject to the fulfilment of the essential criteria of estimator.

In reality, data are not of the same type in every situation. Similarly, parameters to be estimated are not of the same characteristic in the case of different datasets. Accordingly, a specific type of unbiasedness may not be valid and proper for finding unbiased estimator of parameter in the case of every dataset. Thus, the concept of arithmetic unbiasedness may not be or usually is not valid for defining unbiasedness of all types of parameters. Arithmetic unbiasedness is valid for location parameter but not for scale parameter. On the other hand, geometric unbiasedness is valid for scale parameter but not for location parameter. Accordingly, It would be appropriate if it is thought of finding arithmetic unbiased estimator for location parameter and geometric unbiased estimator for scale parameter. It is to be noted mentioned that there is necessity of thinking of more types of unbiasedness due to the necessity of obtaining unbiased estimators of other types of parameters.

Volume: 04 Issue: 03 | July - September 2025 | ISSN: 2583-5602 | www.puirj.com

REFERENCES

- [1] Abidoye, A. O., I. M. Ajayi, F. L. Adewale, and J. O. Ogunjobi (2022): "Unbiased Modified Two-Parameter Estimator for the Linear Regression Model", Journal of Scientific Research, 14(3), 785 95. http://dx.doi.org/10.3329/jsr.v14i3.58234.
- [2] Birnbaum Allan (1961): "A Unified Theory of Estimation, The Annals of Mathematical Statistics. 32(1), 112 135. doi:10.1214/aoms/117705145.
- [3] Brown George W. (1947): "On Small-Sample Estimation", The Annals of Mathematical Statistics, 18(4), 582 585. JSTOR 2236236.
- [4] C. Radhakrishna Rao (1963): "Criteria of Estimation in Large Samples", Sankhyā, Series A, 25(2), 189 -206.
- [5] Chattamvelli, R., Shanmugam, R. (2024). "Mathematical Expectation", In: Random Variables for Scientists and Engineers. Synthesis Lectures on Engineering, Science, and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-58931-7_1.
- [6] Dhritikesh Chakrabarty (2024): "Idea of Arithmetic, Geometric and Harmonic Expectations", Partners Universal International Innovation Journal (PUIIJ), 02(01), 119 124. www.puiij.com . DOI:10.5281/zenodo.10680751.
- [7] Dhritikesh Chakrabarty (2024): "Arithmetic, Geometric and Harmonic Expectations: Expected Rainy Days in India", Partners Universal International Research Journal (PUIRJ), 03(01), 119 – 124. www.puirj.com . DOI:10.5281/zenodo.10825829.
- [8] Dhritikesh Chakrabarty (2024): "Beautiful Multiplicative Property of Geometric Expectation", Partners Universal International Innovation Journal (PUIIJ), 02(02), 92 98. www.puiij.com . DOI: 10.5281/zenodo.10999414.
- [9] Dhritikesh Chakrabarty (2024): "Rhythmic Additive Property of Harmonic Expectation", Partners Universal International Innovation Journal (PUIIJ), 02(05), 37 42. www.puiij.com . DOI:10.5281/zenodo.13995073.
- [10] Dhritikesh Chakrabarty (2024): "Additive Property of Harmonic Expectation From That of Arithmetic Expectation", Partners Universal International Innovation Journal (PUIIJ), 2(6), 24 30. www.puiij.com . https://doi.org/10.5281/zenodo.14629929 .
- [11] Dhritikesh Chakrabarty (2025): "Quadratic Expectation and Some of Its Properties", Partners Universal Innovative Research Publication (PUIRP), 03(02), 74 79. www.puirp.com. 10.5281/zenodo.15292622.
- [12] Jernot Jean-Paul, Patricia Jouannot and Christian Lantuéjoul (2011): "Unbiased Estimators of Specific Connectiuity", Image Analysis & Stereology, 26(3), 129 -136. http://dx.doi.org/10.5566/ias.v26.p129-136.
- [13] Lauritzen, Steffen (2023): "Properties of Estimators", University of Oxford. PDF Retrieved 9 December 2023.
- [14] Lehmann E. L. (1951): "A General Concept of Unbiasedness", The Annals of Mathematical Statistics, 22(4), 587 592. doi:10.1214/aoms/1177729549. JSTOR 2236928.
- [15] Lehmann, E. L. and Casella, G. (1998): "Theory of Point Estimation", Springer, ISBN 0-387-98502-6.
- [16] MacEachern Steven and Elizabeth A. Stasny (1993): "An Easy Ridiculous Unbiased Estimator", Teaching Statistics, 15(1), 12 14. http://dx.doi.org/10.1111/j.1467-9639.1993.tb00248.x.
- [17] Mikhail Nikulin and Vassilly Voynov (2025): "Unbiased Estimators and Their Applications", In book: International Encyclopedia of Statistical Science. DOI: 10.1007/978-3-662-69359-9_733.
- [18] Mosteller F. and Tukey, J. W. (1987): "Data Analysis, including Statistics", The Collected Works of John W. Tukey: Philosophy and Principles of Data Analysis 1965–1986, 4, 601–720. CRC Press. ISBN 0-534-05101-4 via Google Books.
- [19]Paul R. Halmos (1946): "The Theory of Unbiased Estimation", Ann. Math. Statist. 17(1), 34 43. https://doi.org/10.1214/aoms/1177731020.
- [20] Voinov V. G., and M. S. Nikulin (1993): "Unbiased Estimators and Their Applications". Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1970-2.
- [21] Yadav S. K., Singh S. & Gupta, R. (2019): "Random Variable and Mathematical Expectation", In: Biomedical Statistics, Springer, Singapore. https://doi.org/10.1007/978-981-32-9294-9_26.
- [22] Wu, Jibo (2014): "An Unbiased Two-Parameter Estimation with Prior Information in Linear Regression Model", Scientific World Journal, 1 8. http://dx.doi.org/10.1155/2014/206943.