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Abstract - In this review we present the most 
important lines of development, around the well-
known Hermite-Hadamard Inequality, as well as 
some open problems. 
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1. INTRODUCTION  
One of the most attractive concepts in 
Mathematical Sciences is the convex function, 
present today in multiple mathematical areas 
ranging from Optimization to Function Theory and 
center of possibly the most fruitful nucleus in the 
study of inequalities. integral, as we will see later. 
Let's start by introducing the concept of a convex 
function as follows. 

In what follows, [a,b] is a real, closed and bounded 
interval. A function f:[a,b] ⊆ R → R is said to be 
convex on the interval [a,b], if the inequality 

 
holds. We say that f is concave if -f is convex. 

We recommend that readers consult the work [21] 
where a fairly complete overview of the various 
notions and ramifications is presented. For example, 
the following graph that illustrates these extensions 
and derivations of the original concept is interesting. 

 

 

Fig -1: This figure describes different ramifications 
derived from the classical definition of convex 

function, obtained in recent years 
 

With  

{C} Classical convex function. 
{CO} Convexity with respect to another function. 
{SC-C} Strongly convex function with modulus C. 
{HC} Harmonically convex function. 
{SHC-C} Strongly harmonically convex function with 
modulus C. 
{h-C} h-convex function. 
{P-C} P- convex function. 
{G-L} Godunova-Levin function. 
{S-C} s-convex function. 
{SC-1} s-convex function in the first sense. 
{SC-2} s-convex function in the second sense. 
{m-C} m-convex function. 
{G-C} Geometrically convex function. 



Partners Universal International Research Journal (PUIRJ) 

Volume: 01 Issue: 04 | October-December 2022 | ISSN: 2583-5602 | www.puirj.com                            

 

© 2022, PUIRJ    |DOI:10.5281/zenodo.7492608                                                                            Page | 99  

 

{m-GC} m-geometrically convex function. 
{(α,m)-C} (α,m) convex function 
{(α,m)-GC} (α,m) geometrically con|vex function. 
{GAC} Geometric arithmetically convex function. 
{(m,h1,h2)-C} (m, h1,h2) convex function. 
{(m,h1,h2)-GAC} (m, h1,h2) geometric arithmetically 
convex function. 
{η-C} η convex function. 
{η-GAC} Generalized geometric arithmetically 
convex function with respect to η. 
{qC} Quasi-convex function. 
{CC} C- convex function. 
{cqC} C- quasi-convex function. 
{qCC} Quasi-convex function with respect to C. 
{ η qC} η-quasi-convex function. 
 

For a convex function f, the following inequality 

   (1) 

is known in the literature as a Hermite-Hadamard 
integral inequality, so known in honor of the French 
mathematicians who published it, independently of 
each other  ([11,12]). 

This inequality has attracted the attention of 
researchers in recent decades and an increase in 
the number of publications referring to it has been 
appreciated. This development has occurred in four 
fundamental directions: 

I) With new notions of convexity. 

II) Using different integral operators. 

III) Defining functionals, which allow obtaining new 

estimates of  or 

. 

IV) Using a more refined mesh, that is, instead of 
considering a and b, take other nodes in the interval. 

In this paper we will take a tour of one of the most 
dynamic areas of current Mathematics (addresses 
I) and II) above) and we will show various work 

directions, perfectly defined and some open 
problems. 

 

2. THE TOUR 
I) New notions of convexity. 

In [3] we present the following definitions: 

Definiton 1. Let  be a nonnegative function, 
h≠0 and . If inequality 

   
is fulfilled for all  a,bI and  [0,1], where m [0,1], s 
(0,1]. Then is said function f is a (h,m)-convex 
modified of first type on I. 

Definiton 2. Let  be a nonnegative function, 
h≠0 and . If inequality 

   
is fulfilled for all  a,bI and  [0,1], where m [0,1], s 
(0,1]. Then is said function f is a (h,m)-convex 
modified of second type on I. 

Considering the triple (h(z),m,s), we have the 
following particular cases of our definitions: 

(z,1,1), then f is a convex function on [0,+∞). 

(z,m,1), then f  is a m-convex function on [0,+∞). 

(z,1,s) and s (0,1], then f is a s-convex function on 
[0,+∞). 

(z,1,s) and s[-1,1], then f is a extended s-convex 
function on [0,+∞). 

(z,m,s) and s(0,1], then f is a (s,m)-convex function 
on [0,+∞). 

(zα,1,s) with α(0,1], then f is a (α,s)-convex function 
on [0,+∞). 

(zα,m,1) with α(0,1], then f is a (α,m)-convex 
function on [0,+∞). 

(zα,m,s) with α(0,1], then f is a s-(α,m)-convex 
function on [0,+∞). 

(h(z),m,1), then we have a variant of the (h,m)-
convex function on [0,+∞). 



Partners Universal International Research Journal (PUIRJ) 

Volume: 01 Issue: 04 | October-December 2022 | ISSN: 2583-5602 | www.puirj.com                            

 

© 2022, PUIRJ    |DOI:10.5281/zenodo.7492608                                                                            Page | 100  

 

That is, our definition contains as particular cases, 
many of the notions of convexity reported in the 
literature. It is clear then, that studying the inequality  

(1) under the notion of modified (h,m)-convex 
functions, allows us to obtain more general results 
than those known. 

II) Different integral operators. 

In different papers, we have used various operators 
that are generalizations of the classical Riemann 
Integral, of the Riemann-Liouville Fractional Integral 
and others. To cite just one, consider the following 
weighted operator: 

Definition 3. Let fL1(a,b) and let w: [0,+∞)→ [0,+∞) be 
a continuous function with first order derivatives 
integrables on [0,+∞). Then the weighted fractional 
integrals are defined by (right and left, respectively):  

, 

.  

Obviously if w'(t)=1, we obtain the Riemann Integral, 
while if  we obtain the Riemann-Liouville 
Fractional Integral. 
In this way, we can generalize results reported for 
different integral operators. 

Interested readers may consult [1-10], [13-20] and 
[22-25], for varied results. 

 

3. CONCLUSIONS 
We have presented a group of results that illustrate 
one of the most dynamic directions in Mathematical 
Sciences today: the Hermite-Hadamard Inequality 
for convex functions. Obviously, this is not 
exhaustive, for example, new results for the 
Katugampola Fractional Integral can be obtained 
using these notions of convexity or some new ones. 

On the other hand, obtaining new refinements for 
inequality (1) in the class of (h,m)-convex functions 
of the first type is an open problem. 
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